GCV for Tikhonov regularization via global Golub-Kahan decomposition

نویسندگان

  • Caterina Fenu
  • Lothar Reichel
  • Giuseppe Rodriguez
چکیده

Generalized Cross Validation (GCV) is a popular approach to determining the regularization parameter in Tikhonov regularization. The regularization parameter is chosen by minimizing an expression, which is easy to evaluate for small-scale problems, but prohibitively expensive to compute for large-scale ones. This paper describes a novel method, based on Gauss-type quadrature, for determining upper and lower bounds for the desired expression. These bounds are used to determine the regularization parameter for largescale problems. Computed examples illustrate the performance of the proposed method and demonstrate its competitiveness. Copyright c © 0000 John Wiley & Sons, Ltd.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Large-scale Inversion of Magnetic Data Using Golub-Kahan Bidiagonalization with Truncated Generalized Cross Validation for Regularization Parameter Estimation

In this paper a fast method for large-scale sparse inversion of magnetic data is considered. The L1-norm stabilizer is used to generate models with sharp and distinct interfaces. To deal with the non-linearity introduced by the L1-norm, a model-space iteratively reweighted least squares algorithm is used. The original model matrix is factorized using the Golub-Kahan bidiagonalization that proje...

متن کامل

Global Golub-Kahan bidiagonalization applied to large discrete ill-posed problems

We consider the solution of large linear systems of equations that arise from the discretization of ill-posed problems. The matrix has a Kronecker product structure and the right-hand side is contaminated by measurement error. Problems of this kind arise, for instance, from the discretization of Fredholm integral equations of the first kind in two space-dimensions with a separable kernel and in...

متن کامل

A Golub-Kahan-Type Reduction Method for Matrix Pairs

We describe a novel method for reducing a pair of large matrices {A,B} to a pair of small matrices {H,K}. The method is an extension of Golub–Kahan bidiagonalization to matrix pairs, and simplifies to the latter method when B is the identity matrix. Applications to Tikhonov regularization of large linear discrete ill-posed problems are described. In these problems the matrix A represents a disc...

متن کامل

Regularization parameter estimation for large-scale Tikhonov regularization using a priori information

This paper is concerned with estimating the solutions of numerically ill-posed least squares problems through Tikhonov regularization. Given a priori estimates on the covariance structure of errors in the measurement data b, and a suitable statistically-chosen σ, the Tikhonov regularized least squares functional J(σ) = ‖Ax − b‖2Wb + 1/σ 2‖D(x − x0)‖2, evaluated at its minimizer x(σ), approximat...

متن کامل

An Iterative Method for Tikhonov Regularization with a General Linear Regularization Operator

Abstract. Tikhonov regularization is one of the most popular approaches to solve discrete ill-posed problems with error-contaminated data. A regularization operator and a suitable value of a regularization parameter have to be chosen. This paper describes an iterative method, based on Golub-Kahan bidiagonalization, for solving large-scale Tikhonov minimization problems with a linear regularizat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Numerical Lin. Alg. with Applic.

دوره 23  شماره 

صفحات  -

تاریخ انتشار 2016